

Towards near real-time daily GRACE gravity field solutions

Andreas Kvas, Torsten Mayer-Gürr

Geodetic Week 2015, Stuttgart

Outline

- Near real-time gravity fields
- Kalman filter approach
- State-space model estimation
- Evaluation of state-space model

Near real-time GRACE gravity fields

 As part of the EGSIEM project, a tech demonstrator for near realtime gravity service will be established

Near real-time GRACE gravity fields

 As part of the EGSIEM project, a tech demonstrator for near realtime gravity service will be established

European Gravity Service for Improved Emergency Management

Near real-time GRACE gravity fields

 As part of the EGSIEM project, a tech demonstrator for near realtime gravity service will be established

European Gravity Service for Improved Emergency Management

 Current work: Adapting and improving algorithms and methods from post-processing for near real-time capability

 Daily GRACE gravity field solutions require prior information due to limited data coverage

 Daily GRACE gravity field solutions require prior information due to limited data coverage

- Daily GRACE gravity field solutions require prior information due to limited data coverage
- Assumptions:
 - The gravity field does not change arbitrarily, but is (somehow) predictable:

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{w} \quad \mathbf{w} \sim \mathcal{N}(0, \mathbf{Q})$$

- Daily GRACE gravity field solutions require prior information due to limited data coverage
- Assumptions:
 - The gravity field does not change arbitrarily, but is (somehow) predictable:

- Daily GRACE gravity field solutions require prior information due to limited data coverage
- Assumptions:
 - The gravity field does not change arbitrarily, but is (somehow) predictable:

 We can combine the state-space model with GRACE observations in a Kalman filter (see Kurtenbach et al. 2012)

 We can combine the state-space model with GRACE observations in a Kalman filter (see Kurtenbach et al. 2012)

- But: true state-space model of Earth is not accessible
 - \rightarrow we need an estimate

 However: if the covariance structure of consecutive epochs is known, we can use least squares prediction:

$$\mathbf{B} = \Sigma_{\Delta} \Sigma^{-1} \quad \mathbf{Q} = \Sigma - \Sigma_{\Delta} \Sigma^{-1} \Sigma_{\Delta}^{T}$$

 However: if the covariance structure of consecutive epochs is known, we can use least squares prediction:

 However: if the covariance structure of consecutive epochs is known, we can use least squares prediction:

- Still, actual correlations are not known:
 - covariance matrices are approximated with empirical estimates from geophysical models

- Which geophysical models are used? (What constitutes "the process"?)
 - Errors in dealiasing product (atmosphere and ocean)
 - Unmodeled geophysical signals (continental hydrology and cryosphere)

- Which geophysical models are used? (What constitutes "the process"?)
 - Errors in dealiasing product (atmosphere and ocean)
 - Unmodeled geophysical signals (continental hydrology and cryosphere)
- We use the difference between the ESA ESM and AOD1B as an approximation

0 1 2 3 4 5 6 7 8 9 10 variability in EWH [cm]

hydrology

- Problem: only short time series are available
 - For degree and order 40, we need to estimate 2.8 million coefficients from 4380 epochs → redundancy of about 2.6
 - Akaike information criterion: we need more than 850 years of data!

- Problem: only short time series are available
 - For degree and order 40, we need to estimate 2.8 million coefficients from 4380 epochs → redundancy of about 2.6
 - Akaike information criterion: we need more than 850 years of data!
- In conclusion: for reliable estimates, external information is necessary

- Problem: only short time series are available
 - For degree and order 40, we need to estimate 2.8 million coefficients from 4380 epochs → redundancy of about 2.6
 - Akaike information criterion: we need more than 850 years of data!
- In conclusion: for reliable estimates, external information is necessary
- We use the following constraints:
 - Hydrology: River basins are uncorrelated
 - Atmosphere/Ocean: Northern/southern hemisphere and tropics are uncorrelated
 - Cryosphere: Greenland/Antarctica are uncorrelated

State-space model estimation - Results

State-space model estimation - Results

State-space model estimation - Results

- Question 1:
 - How well does the predicted state fit the GRACE observations?
 - Comparison of a-priori range rate residuals in time and space domain

- Question 1:
 - How well does the predicted state fit the GRACE observations?
 - Comparison of a-priori range rate residuals in time and space domain
- Question 2:
 - Are there Kalman filter artifacts in the computed gravity field solutions?
 - Non-geophysical signals in area mean time series (for example river basins)

ifG

ifG

Conclusion and Outlook

- Regional constraint improves state-space model estimate
- Improvements in prediction also translate to gravity field solutions
- There are still unanswered questions:
 - Are all assumptions valid?
 - How to deal with unmodeled signals?

Thank You!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637010.

Horizon 2020

38

Andreas Kvas, Torsten Mayer-Gürr Geodetic Week 2015, Stuttgart

Regional constraint (2)

Andreas Kvas, Torsten Mayer-Gürr Geodetic Week 2015, Stuttgart