

The new ITSG-Grace2016 release

Beate Klinger, Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner

> Institute of Geodesy NAWI Graz, Graz University of Technology

Outline

- ITSG-Grace2016
- Processing details
- Unconstrained monthly solutions
- Summary & Conclusions

ITSG-Grace2016

Method:

- Variational equations
- 24h arc length
- 3h covariance length

Input:

- GRACE Level-1B data from 2002-04 to 2016-01
- ITSG orbit product (Zehentner et al. 2015)
- Improved satellite attitude (Klinger et al. 2014)

Unconstrained monthly solutions:

- Degree 60, 90, 120
- Full normal equations in SINEX format are published

Daily Kalman smoothed solutions:

Degree 40

ITSG-Grace2016

Background models:

- Third body forces: JPL DE421
- Solid earth tides: IERS 2010
- Pole tides: IERS 2010
- Ocean tides: EOT11a
- Ocean pole tides: Desai 2004
- Atmospheric tides: Van Dam & Ray 2010
- Dealiasing: AOD1B RL05
- Relativistic effects: IERS 2010

Restored models:

- Static field: GOCO05s
- Trend, Annual: GOCO05s

Non-gravity parameters:

- Once per day:
- satellite state vector
- Once per day: accelerometer bias per axis (basis splines)
- Once per day: accelerometer scale factors

Beate Klinger

Processing details

Multiple improvements within the processing chain:

- 1) Updated background models
- 2) Instrument data screening
- 3) Improved accelerometer calibration
- 4) Improved numerical orbit integration
- 5) Improved covariance function estimation
- 6) Co-estimation of constrained daily variations: constraints based on improved error estimates for the dealiasing models

Accelerometer calibration

Accelerometer bias & scale factors:

- Two-step approach:
- Calibration equation:

a-priori calibration for data screening

 $\mathbf{a}_{\mathrm{true}} = \mathbf{\underline{S}} \, \mathbf{a}_{\mathrm{obs}} + \mathbf{\underline{b}}$

with
$$\mathbf{S} = \begin{bmatrix} s_x & \alpha + \zeta & \beta - \epsilon \\ \alpha - \zeta & s_y & \gamma + \delta \\ \beta + \epsilon & \gamma - \delta & s_z \end{bmatrix}$$

- Main-diagonal elements
- Shear parameter
- Rotation parameter

(1) Bias:

- Estimation: once per day
- Parameterization: uniform cubic basis splines (UCBS), with a 6h knot interval

(2) Scale factors:

- Estimation: once per day
- Parameterization: fully-populated scale factor matrix
- Off-diagonal elements: non-orthogonality of accelerometer axes (cross-talk), misalignment between SRF and AF

Beate	Klinger
-------	---------

20.04.2016

9

Accelerometer calibration

- Temperature-dependent behavior (bias & scale factors)
- Parameterization significantly affects C20 coefficients

iſĢ

Accelerometer calibration

- Temperature-dependent behavior (bias & scale factors)
- Parameterization significantly affects C20 coefficients

GRACE-A

Orbit integration

Elliptical reference orbit replaces linear motions:

- Improved force model integration for dynamic orbit computation (Encke's method)
- Reduced processing artifacts in adjusted SST observations and residuals

Thu, 17:30-19:30 | Posters | Hall X2

Matthias Ellmer & Torsten Mayer-Gürr: *Numerically stable approach for high-precision orbit integration using Encke's method and equinoctial elements*

Noise modeling – covariance function

- Empirical covariance function: decorrelation of KBR range-rate data
- Robust covariance estimator: guarantees outlier-resistant covariance estimation

Wed, 17:30-19:00 | Posters | Hall X3

Saniya Behzadpour, Torsten Mayer-Gürr & Jakob Flury: *Robust estimation of error covariance functions in GRACE gravity field determination*

```
Beate Klinger
```

EGU2016

Unconstrained monthly solutions

ITSG-Grace2016 Monthly Solutions

Beate Klinger

EGU2016

ITSG-Grace2016 Monthly Solutions

Unconstrained monthly solutions: degree 60, 90 and 120

ITSG-Grace2016 Monthly Solutions

Unconstrained monthly solutions: degree 60, 90 and 120

Beate Klinger

iſĢ

Variability over the Oceans

Trend/Annual/Semiannual reduced (Gauß 300km)

Temporal RMS

CSR RL05 - trend/SA/SSA (Gauß 300km)

RMS = 5.5901

Temporal RMS

ITSG-Grace2014 - trend/SA/SSA (Gauß 300km)

RMS = 4.6011

Temporal RMS

ITSG-Grace2016 - trend/SA/SSA (Gauß 300km)

RMS = 3.7209

lfĢ

Comparison of signals

ITSG-Grace2016 - trend/SA/SSA (Gauß 300km)

RMS = 3.7209

Beate Klinger

EGU2016

iſĢ

Comparison of signals

ITSG-Grace2016 - trend/SA/SSA (Gauß 300km)

RMS = 3.7209

lfĢ

Comparison of signals

ITSG-Grace2016 - trend/SA/SSA (Gauß 300km)

RMS = 3.7209

Beate Klinger

EGU2016

lfĢ

C20 – Temporal evolution

Summary & Conclusions

ITSG-Grace2016

Unconstrained monthly solutions:

- Degree 60, 90, 120
- Full normal equations in SINEX format are published

Daily Kalman smoothed solutions:

Degree 40

New ITSG-Grace2016 Release available at:

ifg.tugraz.at/ITSG-Grace2016

Conclusions

ITSG-Grace2014 vs. ITSG-Grace2016:

- Improved processing contributes to overall accuracy of monthly gravity field solutions
- Noise reduction w.r.t. ITSG-Grace2014 in the order of
 - 20% for n=15-25
 - 40% for n=25-40
 - 25% for n=40-90
- Fully-populated scale factor matrix significantly improves C20 coefficients

Wed, 17:30-19:00 | Posters | Hall X3 Martin Horwath, Andreas Groh & the EGSIEM Team: *Evaluation of recent GRACE monthly solution series with an ice sheet perspective*

Beate Klinger

EGU2016

THANK YOU

Funding provided by:

- the Austrian Research Promotion Agency
- the European Union's Horizon 2020 research and innovative programme under grant agreement No. 637010

