

CNES/GRGS solutions Focus on the inversion process

J.M. Lemoine⁽¹⁾, <u>S. Bourgogne⁽³⁾</u>, R. Biancale⁽¹⁾, S. Bruinsma⁽¹⁾, P. Gégout⁽²⁾

- (1) CNES/GRGS, Toulouse, France
- (2) GET/UMR5563/OMP/GRGS, Toulouse, France
- (3) Géode & Cie, Toulouse, France

- CNES/GRGS solutions
 - GRACE data until degree and order 80
 - LAGEOS 1&2 + STARLETTE + STELLA until 30
 - Available as monthly and 10-day solutions
 - No need for filtering

- Focus of the presentation: inversion process
- Objectives
 - Shed a light on what we do, and why
 - Why we use truncated SVD instead of a-posteriori filtering (two-step process)
 - Increase interest in our solutions

Least squares: the solution to all problems?

- Standard method = least squares + destriping
- $S(p) = sum(|y_i f_i(p)|^2)$
- S is a quadratic function, a « n-dimension paraboloid ». It has a minimum.

S(p) with a two dimensional parameter p=(x,y)

Front view

Side view

Canonical basis (x,y)

Paraboloid axes (u,v)

Least squares solution: corrections on the x and y axes to reach the minimum: p_{min} = p₀ + corr_x x + corr_y y

- Challenge: suppose you're allowed <u>one single move on one</u> <u>axis...</u>
 - ... which one would you choose? x? y? u? v?

- The best result for your effort: in the direction of the steepest axis of the paraboloid
- Little horizontal move (correction on the parameter) with big vertical move (improvements on the residuals)

What happens with a very flat axis?

Very big correction (horizontal) for little improvement in residuals (vertical)

- Is it really worth the effort?
- Risk to leave the linear approximation validity zone
- Is may <u>NOT</u> always be relevant to look for the minimum in <u>EVERY</u> direction
- The least squares solution may just simply not be the best.

Let's have a look at the spherical harmonics

✤ A) Canonical basis (x,y)

B) Paraboloid axes (u,v),
i.e. eigenvectors of the normal matrix

Х

✤ A) Canonical basis: C20

y y

Canonical basis: C21, C22

Canonical basis: C(10,0), C(10,1)

Canonical basis: C(10,6), C(10,10)

Canonical basis: C(30,5), C(30,20)

B) Basis made by the axes of the paraboloid, ranked by the « steepness of the curve »

Mathematically: eigenvectors of the normal matrix, ranked by higher eigenvalues

Example for one monthly normal matrix

Rank no. 1

Combination of Clm/Slm

✤ Rank no. 10

Rank no. 100

* Rank no. 600

* Rank no.1500

Rank no. 3000

Remember:

First ranks Steep curve Little correction Big improvement

Last ranks Flat curve Big correction Little improvement

Question: how do the last ranks look like?

* Rank no. 5900

Rank no. 6000

* Rank no. 6100

Rank no. 6200

The last eigenvectors correspond <u>exactly to the vertical</u> <u>stripes everybody wants to avoid</u>

Yet, you have to add <u>a lot of it</u> to reach your goal (minimum)

✤ Add a little bit of this...

And a lot of this...

In other words...

The worse it is, the more you add.

Does it make any sense at all?

- Along flat directions, there is <u>no</u> good reason to search for the minimum
- It introduces stripes with no improvement on the residuals.
- Suggested solution: don't introduce the stripes

- A quick illustration of the results
 - One normal matrix up to degree 80 (6400 coefficients)
- Inversion of 2500 parameters:
 - Case 1) All SH coefficients up to degree 50
 - Case 2) First 2500 eigenvectors

Case 1: all coefficients up to 50 (2500 parameters)

Case 2: first 2500 eigenvectors

- Same number of parameters
- No filtering
- No stripes

- Conclusion: we avoid most of the stripes and therefore our solutions don't require filtering
- Although our method looks « different » from other groups, <u>it is worth trying</u>: <u>grgs.obs-mip.fr/grace</u>
- Compare our solutions with: DDK5 or DDK6 filtered solutions, or with non-GRACE data.

- More detail:
 - It looks simple, but the method is <u>not</u> as straightforward as suggested.
- Typical issues:
 - Choice of the truncation level
 - Because of the truncation, some low-degree coefficients are not solved...
 - which produces undesirable side effects, such as noise at the poles (example: CNES RL03-v1).

2002 2004 2006 2008 2010 2012 2014 2016 2018

Inversion process

CNES RL03-v1 - 200601 - Equivalent Water Heights Comparison to time series mean (degree 2 to 90) min -48.74 cm / max 134.71 cm / weighted rms 6.63 cm / oceans 4.08 cm

Inversion process

2002 2004 2006 2008 2010 2012 2014 2016 2018

Equivalent Water Heights (cm)

- Solution: we need to do a <u>two-step process</u>:
- 1) Standard inversion of the low degrees, in order to avoid bad initial values with side effects on other coefficients.
- 2) Injection of the solution as initial values of the normal equation, and then truncated SVD.
- An article being prepared to describe our process in detail.

CNES RL03-v1
 2006/01
 One-step
 inversion

CNES RL03-v2
 2006/01
 Two-step
 inversion

- Current status:
 - RL03-v1: problems at the poles.
 - RL03-v2: solved the problems at the poles. Problem recently identified in our C21/S21 coefficients between 2003 and 2012.
 - RL03-v3: just released at grgs.obs-mip.fr/grace
- RL03-v3 is now available on our website until March 2015. We will complete the series until June 2016 by the end of October.

Conclusions

- Poster session for questions and discussion
- Reminder: interactive website
 - thegraceplotter.com / plot.egsiem.eu

Geographical extraction + group comparisons

www.thegraceplotter.com, by CNES/GRGS

Browse images of every group (CNES/GRGS, CSR, JPL, GFZ, AIUB, TUGRAZ, TONGJI, HUST)

GRACE Science Team Meeting, Potsdam, October 5th 2016

Other statistics

G Solutions	© Plot GRACE statistics ⊂ Time-series
	Altitude Intersatellite distance 🗘
	GRACE satellite data CNES
500 km	
400 km	
300 km	
200 km	
100 km	

Thank you for your attention