# CNES/GRGS solutions Focus on the inversion process 

J.M. Lemoine (1), S. Bourgogne (3), R. Biancale (1), S. Bruinsma (1), P. Gégout (2)<br>(1) CNES/GRGS, Toulouse, France<br>(2) GET/UMR5563/OMP/GRGS, Toulouse, France<br>(3) Géode \& Cie, Toulouse, France

* CNES/GRGS solutions
* GRACE data until degree and order 80
* LAGEOS 1\&2 + STARLETTE + STELLA until 30
* Available as monthly and 10-day solutions
* No need for filtering
* Focus of the presentation: inversion process
* Objectives
* Shed a light on what we do, and why
* Why we use truncated SVD instead of a-posteriori filtering (two-step process)
* Increase interest in our solutions
\&east squares: the solution to all problems?
* Standard method = least squares + destriping
* $S(p)=\operatorname{sum}\left(\left|y_{i}-f_{i}(p)\right|^{2}\right)$
* S is a quadratic function, a « n -dimension paraboloid». It has a minimum.


## Inversion process

* $S(p)$ with a two dimensional parameter $p=(x, y)$


Front view


Side view

* Canonical basis (x,y)


## Paraboloid axes (u,v)



* Least squares solution: corrections on the $x$ and $y$ axes to reach the minimum: $p_{\text {min }}=p_{0}+\operatorname{corr}_{x} x+\operatorname{corr}_{y} y$


## Inversion process

* Challenge: suppose you're allowed one single move on one axis...
... which one would you choose? $x$ ? $y$ ? $u$ ? $v$ ?



## Inversion process

* The best result for your effort: in the direction of the steepest axis of the paraboloid
* Little horizontal move (correction on the parameter) with big vertical move (improvements on the residuals)



## Inversion process

* What happens with a very flat axis?

* Very big correction (horizontal) for little improvement in residuals (vertical)
* Is it really worth the effort?
* Risk to leave the linear approximation validity zone
* Is may NOT always be relevant to look for the minimum in EVERY direction

The least squares solution may just simply not be the best.

* Let's have a look at the spherical harmonics
* A) Canonical basis (x,y)


## B) Paraboloid axes (u,v), i.e. eigenvectors of the normal matrix


${\underset{\text { cnes }}{ }}_{\substack{\text { GRGS }}}^{o_{\text {MP }}}$
NO

* A) Canonical basis: C20


GRACE Science Team Meeting, Potsdam, October 5th 2016

* Canonical basis: C21, C22


Inversion process
올

* Canonical basis: C(10,0), C(10,1)


GRACE Science Team Meeting, Potsdam, October 5 th 2016

* Canonical basis: C(10,6), C(10,10)

* Canonical basis: C(30,5), C(30,20)

* B) Basis made by the axes of the paraboloid, ranked by the < steepness of the curve »

* Mathematically: eigenvectors of the normal matrix, ranked by higher eigenvalues
* Example for one monthly normal matrix

Rank no. 1


## * Combination of Clm/Slm



Inversion process

* Rank no. 10


## Rank no. 100



## Inversion process

8

* Rank no. 600



| 0 | 10 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: |

## * Rank no. 1500

## Rank no. 3000



## Inversion process

Remember:
First ranks
Steep curve
Little correction
Big improvement


Last ranks Flat curve Big correction Little improvement


* Question: how do the last ranks look like?


## * Rank no. 5900



## Rank no. 6000




## Rank no. 6200



* The last eigenvectors correspond exactly to the vertical stripes everybody wants to avoid
* Yet, you have to add a lot of it to reach your goal (minimum)


## Inversion process

* Add a little bit of this...


GRACE Science Team Meeting, Potsdam, October 5 th 2016

* And a lot of this...


GRACE Science Team Meeting, Potsdam, October 5 th 2016

* In other words...
* The worse it is, the more you add.
* Does it make any sense at all?
* Along flat directions, there is no good reason to search for the minimum
* It introduces stripes with no improvement on the residuals.
* Suggested solution: don't introduce the stripes
* A quick illustration of the results
* One normal matrix up to degree 80 (6400 coefficients)
* Inversion of 2500 parameters:
* Case 1) All SH coefficients up to degree 50
* Case 2) First 2500 eigenvectors


## * Case 1: all coefficients up to 50 ( 2500 parameters)




## * Case 2: first 2500 eigenvectors




* Same number of parameters
* No filtering
* No stripes
* Conclusion: we avoid most of the stripes and therefore our solutions don't require filtering
* Although our method looks « different » from other groups, it is worth trying: grgs.obs-mip.fr/grace
* Compare our solutions with: DDK5 or DDK6 filtered solutions, or with non-GRACE data.
* More detail:
* It looks simple, but the method is not as straightforward as suggested.
* Typical issues:
* Choice of the truncation level
* Because of the truncation, some low-degree coefficients are not solved...
* ... which produces undesirable side effects, such as noise at the poles (example: CNES RL03-v1).

CNES RLO3-v1 - 200601 - Equivalent Water Heights
Comparison to time series mean (degree 2 to 90 )
$\min -48.74 \mathrm{~cm} / \max 134.71 \mathrm{~cm} /$ weighted rms $6.63 \mathrm{~cm} /$ oceans 4.08 cm


200220042006200820102012201420162018




GRACE Science Team Meeting, Potsdam, October 5th 2016

JPL RL05 monthly DDK5 - 2007/02/01 - 2007/02/28
Equivalent Water Heights comparison to time series mean (degree 2 to 90 ) $\min -112.30 \mathrm{~cm} / \max 78.52 \mathrm{~cm} /$ weighted rms $7.86 \mathrm{~cm} /$ oceans 5.29 cm


200220042006200820102012201420162018




GRACE Science Team Meeting, Potsdam, October 5th 2016

* Solution: we need to do a two-step process:
* 1) Standard inversion of the low degrees, in order to avoid bad initial values with side effects on other coefficients.
* 2) Injection of the solution as initial values of the normal equation, and then truncated SVD.
* An article being prepared to describe our process in detail.
${\underset{\text { cnes }}{ }}_{\substack{\text { GRGS }}}$
* CNES RL03-v1 2006/01 One-step inversion

* CNES RLO3-v2 2006/01 Two-step inversion

* Current status:
* RL03-v1: problems at the poles.
* RL03-v2: solved the problems at the poles. Problem recently identified in our C21/S21 coefficients between 2003 and 2012.
* RL03-v3: just released at grgs.obs-mip.fr/grace
* RLO3-v3 is now available on our website until March 2015. We will complete the series until June 2016 by the end of October.
* Poster session for questions and discussion
* Reminder: interactive website
* thegraceplotter.com / plot.egsiem.eu



## * Geographical extraction + group comparisons



* Browse images of every group (CNES/GRGS, CSR, JPL, GFZ, AIUB, TUGRAZ, TONGJI, HUST)


| Functional | Data center and version | Date |  |
| :---: | :---: | :---: | :---: |
| Water heights v | CNES RL03-v2 (monthly) | 2003 July | $\wedge$ |

CNES RLO3-v2 monthly - 2003/07/01 - 2003/07/31
Equivalent Water Heights comparison to time series mean (degree 2 to 90 ) $\min -83.16 \mathrm{~cm} / \max 207.17 \mathrm{~cm} /$ weighted rms $9.58 \mathrm{~cm} /$ oceans 5.43 cm


200220042006200820102012201420162018


## * Other statistics



300 km


* Thank you for your attention

