EGSIEM reprocessing products

A. Susnik
Astronomical Institute, University of Bern
Motivation

• For Precise Orbit Determination (POD) of Low Earth Orbiting (LEO) satellites, Precise Point Positioning (PPP) is a well established technique.
• However PPP requires the knowledge of precise and, even more importantly, consistent set of GPS orbits and satellite clock corrections.

• To provide consistent set of GPS satellite clock corrections, orbits, Earth rotation parameters and station coordinates, Astronomical Institute of University of Bern (AIUB) initiated a dedicated reprocessing campaign.

• The activity has been extended to a full reprocessing campaign, starting in year 1994. With year 2002 GLONASS was included into the processing. The reprocessing is based on Center for Orbit Determination (CODE) analysis strategy (as of Summer 2015), including the extended ECOM (Empirical CODE Orbit Model, Arnold et al., 2015).
Motivation

<table>
<thead>
<tr>
<th></th>
<th>GPS</th>
<th>GLONASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbits</td>
<td>since 1994</td>
<td>since 2002</td>
</tr>
<tr>
<td>Satellite clock corrections (30 s)</td>
<td>since 2000</td>
<td>since 2008</td>
</tr>
<tr>
<td>Satellite clock corrections (5 s)</td>
<td>since 2003</td>
<td>since 2010</td>
</tr>
</tbody>
</table>

In this context GLONASS 5 s satellite clock corrections were computed for the first time.
Data from more than 250 globally distributed stations were homogenously processed for the time period 1994 – 2014.

The reprocessing starts on 2 January 1994 (with GPS only) and ends in 31 December 2014. Starting with 1 January 2002, GLONASS is included.
Processing strategy

• Since the reference frame for the most recent International GNSS Service (IGS) reprocessing camping (repro2) is still IGb08, the same station selection was used for EGSIEM-REPRO.

• The latest development version of Bernese GNSS Software was used, together with the extension of the Empirical CODE orbit model (ECOM2):

<table>
<thead>
<tr>
<th>Parameters estimated in</th>
<th>D</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original ECOM</td>
<td>constant</td>
<td>constant</td>
<td>constant, 1-cpr</td>
</tr>
<tr>
<td>Extended ECOM</td>
<td>constant, 2-cpr, 4-cpr</td>
<td>constant</td>
<td>constant, 1-cpr</td>
</tr>
</tbody>
</table>

Empirical parameters estimated in D (satellite-Sun direction), Y (direction along the satellite’s solar panels axes), and B (completes the orthogonal right-handed system) for the original ECOM and the extended ECOM (cycle-per-revolution is denoted as cpr).
Processing strategy

1-day GNSS orbit product generation

1-day normal equation’s

CRD ERP TRP ORB

3-day GNSS orbit product
generation

CRD ERP TRP ORB

CRD / ITRF comparison
SLR validation

Final results:
GNSS ORB ERP CLK

5 min clocks

30 sec clocks

5 sec clocks

GNSS satellite clock corrections

Import of observations from RINEX

Receiver clock synchronization to GPS system time

Preprocessing of phase and
code measurements

5 min clocks

3 global clusters
45 stations/cluster

EHRI from 5 min to 30 sec

EHRI from 30 sec to 5 sec

CRD = Coordinate products
TRP = Troposphere products
ERP = Earth Rotation Parameters
ORB = Orbit products

CLK = GNSS Clock Corrections
EHRI = Efficient high-rate clock interpolation
Generation of GNSS Orbits

- An important aspect in obtaining high-quality GNSS results is the resolution of the carrier phase double difference ambiguities to their integer values.
Generation of GNSS Orbits

- An important aspect in obtaining high-quality GNSS results is the resolution of the carrier phase double difference ambiguities to their integer values.

![Graph showing median of RMS in cm for GLONASS and GPS satellites over MJD 53000 to 58000.](image)

Computation algorithm for orbit quality changed
Generation of GNSS Orbits

- An important aspect in obtaining high-quality GNSS results is the resolution of the carrier phase double difference ambiguities to their integer values.
Generation of GNSS Orbits

Also verification of station-related parameters was performed, in order to detect stations with discontinuities between subsequent days (e.g. due to equipment changes or Earthquakes). Only if no event was detected, the coordinates have been stacked to three-day solutions.
Results from the double difference processing were introduced as know in generation of GNSS clock products. In first step a zero-difference network solution is performed for estimation of satellite and receiver clock parameters with 300 s sampling. However, the procedure is limited to a sampling of 30 s, since the standard IGS stations provide data only with this sampling. GNSS observations with a sampling of 1 Hz are provided from IGS real-time project (Caissy et al., 2012).
GNSS clock products

Number of stations delivering high-rate RINEX2 data for the period between 2003 and the end of 2014.

Geographical distribution of stations providing high-rate RINEX2 data on January 1, 2003 (black dots) and on January 1, 2014 (red stars).
Completeness of GPS satellite clock corrections with a sampling of 30 s for the time period 2006 – 2007.
Completeness of GPS satellite clock corrections with a sampling of 5 s for the time period 2006 – 2007.
Validation of the products

GRACE Precise Orbit Determination

Validation of GNSS orbits by means of Satellite Laser Ranging
GRACE Precise Orbit Determination

- For efficient validation of global GPS orbits and clock solutions over all regions of the Earth by processing data from one single receiver.
- Based on undifferenced GPS data.
- Results were compared to solutions obtained with products from IGS repro1 (since from repro2 there are no consistent clock corrections available at CODE).
- As an independent orbit validation of obtained GRACE orbits, Satellite Laser Ranging was used, using normal points from 16 SLR stations.
GRACE Precise Orbit Determination

GRACE-A, kinematic

Average: 3.82 mm
3.46 mm

EGSIEM-REPRO

Improvement of 0.36 mm

Day of year 2008
GRACE Precise Orbit Determination

GRACE-B, kinematic

Average: 3.24 mm
2.80 mm

EGSIEM-REPRO

Improvement of 0.44 mm

Day of year 2008
GRACE Precise Orbit Determination

Mean and standard deviation in mm of SLR residuals for reduced-dynamic orbits over entire year 2008. Numbers in brackets indicate number of observations.

<table>
<thead>
<tr>
<th></th>
<th>GRACE A</th>
<th>GRACE B</th>
</tr>
</thead>
<tbody>
<tr>
<td>repro1</td>
<td>1.99 ± 18.14 (32587)</td>
<td>0.09 ± 18.51 (31008)</td>
</tr>
<tr>
<td>EGSIEM-REPRO</td>
<td>2.21 ± 12.93 (32639)</td>
<td>0.70 ± 14.14 (31030)</td>
</tr>
</tbody>
</table>

Mean and standard deviation in mm of SLR residuals for kinematic orbits over entire year 2008. Number in brackets indicate number of observations.

<table>
<thead>
<tr>
<th></th>
<th>GRACE A</th>
<th>GRACE B</th>
</tr>
</thead>
<tbody>
<tr>
<td>repro1</td>
<td>1.24 ± 19.98 (32358)</td>
<td>0.44 ± 23.00 (30343)</td>
</tr>
<tr>
<td>EGSIEM-REPRO</td>
<td>2.11 ± 17.00 (32409)</td>
<td>1.24 ± 19.75 (30456)</td>
</tr>
</tbody>
</table>
Satellite Laser Ranging to GNSS
SLR residuals with respect to GLONASS-M orbits from repro2 using the original ECOM. Residuals between January 2003 and December 2013 are shown. Observations to four GLONASS satellites (SVN 723, 725, 736, 737) were excluded due to anomalous patterns. Furthermore, all residuals having an absolute beta angle smaller than 15 are not shown due to unmodeled attitude during eclipses. The black line indicates the linear regression behavior between the SLR residuals and the elongation angle.
Satellite Laser Ranging to GNSS

SLR residuals with respect to GLONASS-M orbits from EGSiem-REPRO using the extended ECOM. Residuals between January 2003 and December 2013 are shown. Observations to four GLONASS satellites (SVN 723, 725, 736, 737) were excluded due to anomalous patterns. Furthermore, all residuals having an absolute beta angle smaller than 15 are not shown due to unmodeled attitude during eclipses. The black line indicates the linear regression behavior between the SLR residuals and the elongation angle.
Reference Frame Products

- Reference Frame Products covering GPS (1994-2001) and combined GPS+GLONASS (2002-2014) are available in the directory:

 http://www.aiub.unibe.ch/download/REPRO_2015

- A detailed analysis strategy summary is available in:

 CODE_REPRO_2015.ACN

- Referencing Reference Frame Products:
 Susnik, Andreja; Dach, Rolf; Villiger, Arturo; Maier, Andrea; Arnold, Daniel; Schaer, Stefan; Jaeggi, Adrian (2016). CODE reprocessing product series. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/REPRO_2015; DOI: 10.7892/boris.80011.
Reference Frame Products

CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODwwww.eph.Z</td>
<td>Final GNSS orbits</td>
</tr>
<tr>
<td>CODwwww.tro.Z</td>
<td>Daily troposphere SINEX file from final solution</td>
</tr>
<tr>
<td>CODwwww.erp.Z</td>
<td>Daily final Earth rotation parameter files, IERS format</td>
</tr>
<tr>
<td>CODwwww.snx.Z</td>
<td>Daily SINEX product</td>
</tr>
<tr>
<td>CODwww7.erp.Z</td>
<td>Weekly final Earth rotation parameter files, IERS format</td>
</tr>
<tr>
<td>CODwww7.snx.Z</td>
<td>Weekly SINEX product</td>
</tr>
<tr>
<td>CODwww7.sum.Z</td>
<td>Weekly processing summary</td>
</tr>
<tr>
<td>CODwwww.clk.Z</td>
<td>Final clock product (GPS since GPS week 1060 DOY 124, 03-May-2000; GPS+GLONASS since GPS week 1460 DOY 001, 01-Jan-2008), Clock RINEX format, with a sampling of 30 sec for the satellite and reference (station) clock corrections and 5 minutes for all other station clock corrections</td>
</tr>
<tr>
<td>CODwwww.clk_05s.Z</td>
<td>Final clock product (GPS since GPS week 1199 DOY 001, 01-Jan-2003; GPS+GLONASS since GPS week 295, 22-Oct-2010), Clock RINEX format, with a sampling of 5 sec for the satellite and reference (station) clock corrections and 5 minutes for all other station clock corrections</td>
</tr>
</tbody>
</table>
Publications

- [...]