Validation of monthly GRACE gravity field solutions against in situ ocean bottom pressure measurements

> Lea Poropat, Inga Bergmann-Wolf, Henryk Dobslaw, Frank Flechtner

> > German Research Centre for Geosciences (GFZ) Department 1: Geodesy Section 1.3: Earth System Modelling poropat@gfz-potsdam.de

Motivation

Motivation

Validation against independent measurements is required!

Validation against independent measurements is required!

Motivation

mate Experimen

Validation against independent measurements is required!

Motivation

mate Experimen

Validation against independent measurements is required!

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

 removing tidal signal T_TIDE MATLAB package for classical harmonic analysis [Pawlowicz et al., 2002]

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

removing outliers, drifts, jumps and trends

T_TIDE MATLAB package for classical harmonic analysis [Pawlowicz et al., 2002]

removing tidal signal

removing outliers, drifts, jumps and trends

T_TIDE MATLAB package for classical harmonic analysis [Pawlowicz et al., 2002]

removing tidal signal

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

 removing tidal signal T_TIDE MATLAB package for classical harmonic analysis [Pawlowicz et al., 2002]

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

3 frequency bands:

- removing outliers, drifts, jumps and trends
- changing time step to 1 hour
- stacking time series from the same station

- removing tidal signal —
- filtering data
- ormonthly mean

T_TIDE MATLAB package for classical harmonic analysis [Pawlowicz et al., 2002]

Validation of Tellus monthly solutions

Validation of Tellus monthly solutions

8

Helmholtz Centre

POTSDAM

Validation of EGSIEM preliminary ocean grids

GRACE solution only for years 2006-2007 \rightarrow only 16 stations provide sufficient data (12 monthly means) in that time span

 a database of ~ 100 in situ OBP timeseries is available for validation of GRACE monthly solutions, new stations are to be added to cover also recent years

- a database of ~ 100 in situ OBP timeseries is available for validation of GRACE monthly solutions, new stations are to be added to cover also recent years
- the actual days that entered a GRACE monthly solution should be also averaged from the in situ data to improve the fit

- a database of ~ 100 in situ OBP timeseries is available for validation of GRACE monthly solutions, new stations are to be added to cover also recent years
- the actual days that entered a GRACE monthly solution should be also averaged from the in situ data to improve the fit
- GRACE monthly solutions are quite noisy in the tropics, but show moderate skills in less stratified oceans at higher latitudes

- a database of ~ 100 in situ OBP timeseries is available for validation of GRACE monthly solutions, new stations are to be added to cover also recent years
- the actual days that entered a GRACE monthly solution should be also averaged from the in situ data to improve the fit
- GRACE monthly solutions are quite noisy in the tropics, but show moderate skills in less stratified oceans at higher latitudes
- 2 years of monthly-mean test data is certainly too short to draw robust conclusions out of the OBP validation

- a database of ~ 100 in situ OBP timeseries is available for validation of GRACE monthly solutions, new stations are to be added to cover also recent years
- the actual days that entered a GRACE monthly solution should be also averaged from the in situ data to improve the fit
- GRACE monthly solutions are quite noisy in the tropics, but show moderate skills in less stratified oceans at higher latitudes
- 2 years of monthly-mean test data is certainly too short to draw robust conclusions out of the OBP validation

Thank you!

References

- Macrander, A., Boening, C., Boebel, O., Schroeter, J. (2010), Validation of GRACE gravity fields by in-situ data of ocean bottom pressure, System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin
- Pawlowicz, R., Beardsley, B. & Lentz, S. (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Computers & Geosciences, 28, 929-937, doi: 10.1016/S0098-3004(02)00013-4
- Cheng, M., Ries, J.C. & Tapley, B.D. (2011), Variations of the Earth's figure axis from satellite laser ranging and GRACE, J. Geophys. Res., 116, B01409, doi:10.1029/2010JB000850
- Paulson, A., Zhong, S. & Wahr, J. (2007), Inference of mantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 497–508, doi:10.1111/j.1365-246X.2007.03556.x
- Bergmann-Wolf, I., Zhang, L. & Dobslaw, H. (2014), Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from GRACE, J. Geod. Sci., 4, 37–48, doi:10.2478/jogs-2014-0006
- Wahr, J., Molenaar, M. & Bryan, F. (1998), Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, 30,205–30,229, doi:10.1029/98JB02844
- Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geod., 81, 733–749, doi:10.1007/s00190-007-0143-3

Relative explained variance

Explained variance – variance of in situ measurements explained by the model

$$V = \frac{\left\langle obs \right\rangle - \left\langle obs - \text{mod} \right\rangle}{\left\langle obs \right\rangle}$$

Validation of ITSG 2016 monthly solutions

10

Helmholtz Centre POTSDAM OBP fields from GRACE GFZ RL05a

Work in progress

- improve leakage correction
- remove Sumatra-Andaman earthquake signature
- reconsider GIA model
- residual tidal signal assessment: Gulf of Carpentaria
- reconsider level of smoothing (DDK2, DDK3)

OBP fields from GRACE GFZ RL05a

- 04/2002 08/2015
- up to d/o=90
- atmospheric jumps corrected with GAE & GAF
- C20 replaced (Cheng et al., 2011)
- GIA correction (Paulson et al., 2007)
- Geocenter variations included acc. to Bergmann-Wolf et al. (2014)
- land leakage reduction acc. to Wahr et al. (1998)
- GAD added back
- Filtering with DDK1 (Kusche, 2007)
- grid: 1° x 1°

