Combination on Normal Equation Level

Ulrich Meyer (AIUB)

EGSIEM General Assembly

AIUB Bern

January 19-20, 2017

Contents

- Motivation for NEQ-combination
- Weighting schemes
- Combination results

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

EGSIEM Project - Three services are beeing established

Near real-time/regional service

Hydrological service

EGSIEM General Assembly

Scientific Combination Service

EGSIEM General Assembly

Scientific Combination Service

- The EGSIEM combination service provides monthly GRACE K-band gravity fields combined on solution / normal equation (NEQ) Level.
- To ensure consistency, a set of common standards for reference frame, Earth rotation, force model and satellite geometry were defined.
- EGSIEM lately was extended to also include SLR and GPS-only NEQs.

> Why combine results based on the same observations?
> Errors in GRACE monthly gravity fields are still dominated by analysis and background model noise, not observation noise!

EGSIEM General Assembly AIUB Bern, January 19-20, 2017

Motivation for NEQ-Combination

- Correlations are correctly taken into account, even with pre-eliminated parameters.
- In principle corrections are estimated for the original observations, not the intermediate individual model parameters.

Comparison to official solutions 2006/01

- Degree amplitudes of anomalies with respect to modeled secular and seasonal variations (based on ICGEM dataset).
- Only orders $0 . .29$ are considered: evaluation of part of the spectrum that is determined meaningful.

Comparison to official solutions 2006/01

- Degree amplitudes of anomalies with respect to modeled secular and seasonal variations (based on ICGEM dataset).
- Only orders 0.. 29 are considered: evaluation of part of the spectrum that is determined meaningful.

EGSIEM General Assembly

Comparison to official solutions 2006/01

- Degree amplitudes of anomalies with respect to modeled secular and seasonal variations (based on ICGEM dataset).
- Only orders 0.. 29 are considered: evaluation of part of the spectrum that is determined meaningful.

EGSIEM General Assembly

Comparison to official solutions 2006/01

- Degree amplitudes of anomalies with respect to modeled secular and seasonal variations (based on ICGEM dataset).
- Only orders 0.. 29 are considered: evaluation of part of the spectrum that is determined meaningful.

EGSIEM General Assembly

Individual Contributions: AIUB

- AIUB: Celestial mechanics approach (dynamic approach relying on frequent pseudo-stochastic accelerations)
- approx. 500000 KRR observations and
- 500000 kinematic positions (30s) / month

Individual Contributions: ITSG

- ITSG: originally short arc approach, empirical noise model
- approx. 500000 KRR observations and
- 50000 kinematic positions (300s) / month

Individual Contributions: GFZ

- GFZ: dynamic approach, dense accelerometer parametrization
- approx. 500000 KRR observations and
- approx. 2500000 GPS observations / month

Individual Contributions: GRGS

- GRGS: magic approach
- approx. 500000 KRR observations and
- approx. 2500000 GPS observations / month

Formal errors: 2006/01

Contains main part of signal

EGSIEM General Assembly

Variance Component Estimation

Iterative determination of weights:

$$
\begin{gathered}
w_{i, 0}=1 / \sigma_{i, 0}^{2} ; \sigma_{i, 0}^{2}=1 \\
\left(\sum_{i} w_{i, k} \mathbf{N}_{i}\right) \mathbf{d} \mathbf{x}=\sum_{i} w_{i, k} \mathbf{b}_{i} ; \mathbf{I}_{i, k}^{\top} \mathbf{P}_{i, k} \mathbf{l}_{\mathrm{i}, \mathrm{k}}=\mathrm{w}_{\mathrm{i}, \mathrm{k}} \mathbf{I}_{\mathrm{i}}^{\top} \mathbf{P}_{\mathrm{i}} \mathbf{l}_{\mathrm{i}} \\
\sigma_{\mathrm{i}, \mathrm{k}+1}^{2}=\mathbf{v}_{\mathrm{i}, \mathrm{k}}^{\top} \mathbf{P}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}, \mathrm{k}} / \mathrm{r}_{\mathrm{i}}
\end{gathered}
$$

Square sum of residuals: $\mathbf{v}_{\mathrm{i}, \mathrm{k}}^{\top} \mathbf{P}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}, \mathrm{k}}=\mathbf{I}_{\mathrm{i}}^{\top} \mathbf{P}_{\mathrm{i}} \mathbf{I}_{\mathrm{i}}-\mathbf{b}_{\mathrm{i}}{ }^{\top} \mathbf{d} \mathbf{x}_{\mathrm{k}}$ Partial redundancy: $\quad r_{i}=n_{i}-m$

Variance Component Estimation (0)

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Variance Component Estimation (1)

Variance Component Estimation (2)

Variance Component Estimation (3)

Variance Component Estimation (4)

EGSIEM General Assembly

Individual contributions (variance factors): 2006/01

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Empirical rescaling to achieve equal impact

A straight-forward empirical approach is to search for weights w_{i} that equalize the impact of individual contributions on pairwise combinations:

$$
\left(\mathbf{N}_{\mathrm{ref}}+\mathrm{w}_{\mathrm{i}} \mathbf{N}_{\mathrm{i}}\right) \mathbf{d x}=\mathbf{b}_{\mathrm{ref}}+\mathrm{w}_{\mathrm{i}} \mathbf{b}_{\mathrm{i}}
$$

The impact is measured by:

$$
\operatorname{RMS}_{\mathrm{i}}=\operatorname{SQRT}\left(\sum_{l, m}\left(\mathrm{~K}_{\mathrm{l}, \mathrm{~m}}^{\mathrm{comb}}-\mathrm{K}_{\mathrm{l}, \mathrm{~m}}{ }^{\mathrm{i}}\right)^{2} / \mathrm{n}_{\text {coef }}\right)
$$

Equal impact is achieve for:

$$
\mathrm{RMS}_{\mathrm{i}} / \mathrm{RMS}_{\mathrm{ref}}=1
$$

Consequently weights derived on solution level are applied.

Empirical rescaling to achieve equal impact

equalizing weight	
GRGS	1.60
GFZ	1.00
AIUB	7.81
ITSG	2.21

Individual contributions (equalized): 2006/01

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Equal contribution by empirical weighting

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Individual Solutions 2006/01

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Weighted Combination on Solution Level

EGSIEM General Assembly
AIUB Bern, January 19-20, 2017

Weighted Combination on NEQ-level

equalizing weight	
GRGS	1.60
GFZ	1.00
AIUB	7.81
ITSG	2.21

Solution:	weight
GRGS	0.14
GFZ	0.19
AIUB	0.29
ITSG	0.38

EGSIEM General Assembly

Weighting schemes: comparison

$\begin{aligned} & \bar{\pi} \\ & \frac{\bar{V}}{2} \end{aligned}$	GRGS	0.25				GRGS	0.29
	GFZ	0.25				GFZ	0.08
	AIUB	0.25				AIUB	0.53
	ITSG	0.25				ITSG	0.10
$\begin{aligned} & \frac{00}{N} \\ & \frac{10}{\pi} \\ & \frac{1}{0} \\ & \hline \end{aligned}$			* ب				I
				GRGS	0.49	GRGS	0.29
				GFZ	0.21	GFZ	0.08
	GRGS	0.13		AIUB	0.18	AIUB	0.53
	GFZ	0.08		ITSG	0.12	ITSG	0.10
	AIUB	0.62		GRGS	0.14	GRGS	0.07
	ITSG	0.17		GFZ	0.19	GFZ	0.05
				AIUB	0.29	AIUB	0.65
				ITSG	0.38	ITSG	0.23

EGSIEM General Assembly

Combination on Normal Equation Level

What can we do to a normal equation without changing the individual solution:

$$
N d x=b ; x=x_{0}+d x
$$

Scalar scaling: $f \mathbf{N d x}=\mathrm{f} \boldsymbol{b}$

Matrix scaling: $\quad F^{\top}$ N F F $^{-1} d x=F^{\top} b ; x_{0}{ }^{d}=F^{-1} \mathbf{x}_{0}$
Transformation to different a priori values:

$$
x_{0}{ }^{\prime}=x_{0}+d x_{0} ; N\left(d x-d x_{0}\right)=b-N d x_{0}
$$

Rescaling of formal errors

Cofactor matrix: $\mathbf{Q}^{\prime}=\mathbf{S} \mathbf{Q S} ; \mathrm{s}_{\mathrm{ii}}=\sigma_{\mathrm{ii}} / \sigma_{\mathrm{ii}, \text { ref }} ; \mathrm{s}_{\mathrm{ij}}=0$
Normal matrix: $\mathbf{F}^{\top} \mathbf{N} \mathbf{F}=(\mathbf{S} \mathbf{Q} \mathbf{S})^{-1}$
Cholesky decomposition: $\quad \mathbf{N}=\mathbf{G} \mathbf{G}^{\top}$

$$
(\mathbf{S} \mathbf{Q} \mathbf{S})^{-1}=\mathbf{H} \mathbf{H}^{\top}
$$

$$
\mathbf{F}^{\top} \mathbf{G} \mathbf{G}^{\top} \mathbf{F}=\mathbf{H} \mathbf{H}^{\top} \Rightarrow \mathbf{F}^{\top}=\mathbf{H} \mathbf{G}^{-1}
$$

Resulting NEQ: $\mathbf{N}^{\mathbf{\prime}} \mathbf{d x} \mathbf{x}^{\mathbf{~}}=\mathbf{b}^{\mathbf{\prime}}$
with $\mathbf{N}^{\prime}=\mathbf{F}^{\top} \mathbf{N} \mathbf{F}, \mathbf{b}^{\mathbf{\prime}}=\mathbf{F}^{\top} \mathbf{b}, \mathbf{d} \mathbf{x}^{\boldsymbol{\prime}}=\mathbf{F}^{-1} \mathbf{d x}$ and $\mathbf{x}_{\mathbf{0}}{ }^{\prime}=\mathrm{F}^{-1} \mathbf{x}_{\mathbf{0}}$

2006/01

In case one contribution is by far the best, the EGSIEMcombinations are close to it.

2006/02

The combination on NEQ-level seems to be more robust than the combination on solution level.

EGSIEM General Assembly

2006/03

EGSIEM General Assembly

2006/04

EGSIEM General Assembly

2006/05

EGSIEM General Assembly

2006/06

In case several contributions are comparably good, the EGSIEM-combinations are better!

EGSIEM General Assembly

2006/07

EGSIEM General Assembly

2006/08

2006/09

EGSIEM General Assembly

2006/10

$=$ AIUB
$=$ GFZ
$=$ ITSG
GRGS
COMB solution
COMB NEQ

Combination is statistics, not magic -> screening (or improve individual contributions!!)

EGSIEM General Assembly

2006/11

$$
\begin{aligned}
& =\text { AIUB } \\
& =\text { GFZ } \\
& =\text { ITSG } \\
& \text { GRGS } \\
& \text { COMB solution } \\
& \text { COMB NEQ } \\
& \hline
\end{aligned}
$$

2006/12

EGSIEM General Assembly

2007/01

2007/02

$$
\begin{aligned}
& =\text { AIUB } \\
& =\text { GFZ } \\
& =\text { ITSG } \\
& \text { GRGS } \\
& \text { COMB solution } \\
& \text { COMB NEQ }
\end{aligned}
$$

EGSIEM General Assembly

2007/03

EGSIEM General Assembly

2007/04

EGSIEM General Assembly

2007/05

EGSIEM General Assembly

2007/06

EGSIEM General Assembly

2007/07

EGSIEM General Assembly

2007/08

EGSIEM General Assembly

2007/09

EGSIEM General Assembly

2007/10

EGSIEM General Assembly

2007/11

EGSIEM General Assembly

2007/12

EGSIEM General Assembly

