

Combination on Normal Equation Level

Ulrich Meyer (AIUB)

EGSIEM General Assembly AIUB Bern

January 19 - 20, 2017

Horizon2020

Contents

- Motivation for NEQ-combination
- Weighting schemes
- Combination results

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM Project – Three services are beeing established

Scientific Combination Service

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

- The EGSIEM combination service provides monthly GRACE K-band gravity fields combined on solution / normal equation (NEQ) Level.
- To ensure consistency, a set of common standards for reference frame, Earth rotation, force model and satellite geometry were defined.
- EGSIEM lately was extended to also include SLR and GPS-only NEQs. Why combine results based on the same observations?

Errors in GRACE monthly gravity fields are still dominated by analysis and background model noise, not observation noise!

• Correlations are correctly taken into account, even with pre-eliminated parameters.

• In principle corrections are estimated for the original observations, not the intermediate individual model parameters.

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

- Degree amplitudes
 of anomalies with
 respect to modeled
 secular and seasonal
 variations (based on
 ICGEM dataset).
- Only orders 0..29 are
 considered:
 evaluation of part of
 the spectrum that is
 determined
 meaningful.

- Degree amplitudes
 of anomalies with
 respect to modeled
 secular and seasonal
 variations (based on
 ICGEM dataset).
- Only orders 0..29 are considered:
 evaluation of part of the spectrum that is determined meaningful.

- Degree amplitudes
 of anomalies with
 respect to modeled
 secular and seasonal
 variations (based on
 ICGEM dataset).
- Only orders 0..29 are considered:
 evaluation of part of the spectrum that is determined meaningful.

- Degree amplitudes
 of anomalies with
 respect to modeled
 secular and seasonal
 variations (based on
 ICGEM dataset).
- Only orders 0..29 are
 considered:
 evaluation of part of
 the spectrum that is
 determined
 meaningful.

Individual Contributions: AIUB

- AIUB: Celestial mechanics approach (dynamic approach relying on frequent pseudo-stochastic accelerations)
 - approx. 500000 KRR observations and
 - 500000 kinematic positions (30s) / month

Individual Contributions: ITSG

- ITSG: originally short arc approach, empirical noise model
 - approx. 500000 KRR observations and
 - 50000 kinematic positions (300s) / month

Individual Contributions: GFZ

- GFZ: dynamic approach, dense accelerometer parametrization
 - approx. 500000 KRR observations and
 - approx. 2500000 GPS observations / month

Individual Contributions: GRGS

- **GRGS:** magic approach
 - approx. 500000 KRR observations and
 - approx. 2500000 GPS observations / month

Formal errors: 2006/01

Contains main part of signal

Variance Component Estimation

Iterative determination of weights: $w_{i,0} = 1 / \sigma_{i,0}^{2}; \sigma_{i,0}^{2} = 1$ $(\sum_{i} w_{i,k} \mathbf{N}_{i}) \mathbf{dx} = \sum_{i} w_{i,k} \mathbf{b}_{i} ; \mathbf{I}_{i,k}^{T} \mathbf{P}_{i,k} \mathbf{I}_{i,k} = w_{i,k} \mathbf{I}_{i}^{T} \mathbf{P}_{i} \mathbf{I}_{i}$ $\sigma_{i,k+1}^{2} = \mathbf{v}_{i,k}^{T} \mathbf{P}_{i} \mathbf{v}_{i,k} / \mathbf{r}_{i}$

Square sum of residuals: $\mathbf{v}_{i,k}^{T} \mathbf{P}_i \mathbf{v}_{i,k} = \mathbf{I}_i^{T} \mathbf{P}_i \mathbf{I}_i - \mathbf{b}_i^{T} \mathbf{d} \mathbf{x}_k$ Partial redundancy: $\mathbf{r}_i = \mathbf{n}_i - \mathbf{m}$

Variance Component Estimation (0)

Variance Component Estimation (1)

Variance Component Estimation (2)

Variance Component Estimation (3)

Variance Component Estimation (4)

Individual contributions (variance factors): 2006/01

A straight-forward empirical approach is to search for weights w_i that equalize the impact of individual contributions on pairwise combinations:

$$(\mathbf{N}_{ref} + w_i \mathbf{N}_i) \mathbf{dx} = \mathbf{b}_{ref} + w_i \mathbf{b}_i$$

The impact is measured by:

 $RMS_{i} = SQRT(\sum_{l,m} (K_{l,m}^{comb} - K_{l,m}^{i})^{2}/n_{coef})$ Equal impact is achieve for:

 $RMS_i/RMS_{ref} = 1$

Consequently weights derived on solution level are applied.

Empirical rescaling to achieve equal impact

equalizing weight							
GRGS	1.60						
GFZ	1.00						
AIUB	7.81						
ITSG	2.21						

Individual contributions (equalized): 2006/01

Equal contribution by empirical weighting

Individual Solutions 2006/01

Weighted Combination on Solution Level

Weighted Combination on NEQ-level

Weighting schemes: comparison

	GRGS	0.25						GRGS	0.29
equal	GFZ	0.25					II VCE	GFZ	0.08
	AIUB	0.25						AIUB	0.53
	ITSG	0.25						ITSG	0.10
								П	
			*	* * solution level VCE	GRGS	0.49		GRGS	0.29
equalizing					GFZ	0.21		GFZ	0.08
	GRGS	0.13			AIUB	0.18		AIUB	0.53
	GFZ	0.08			ITSG	0.12		ITSG	0.10
	AIUB	0.62			GRGS	0.14	=	GRGS	0.07
	ITSG	0.17			GFZ	0.19		GFZ	0.05
		*	*		AIUB	0.29		AIUB	0.65
					ITSG	0.38		ITSG	0.23

What can we do to a normal equation without changing the individual solution: $N dx = b ; x = x_0 + dx$ Scalar scaling: f N dx = f bMatrix scaling: $\mathbf{F}^{\mathsf{T}} \mathbf{N} \mathbf{F} \mathbf{F}^{-1} \mathbf{dx} = \mathbf{F}^{\mathsf{T}} \mathbf{b}; \mathbf{x}_{0}' = \mathbf{F}^{-1} \mathbf{x}_{0}$ Transformation to different a priori values: $x_0' = x_0 + dx_0$; N (dx - dx_0) = b - N dx_0

Rescaling of formal errors

Cofactor matrix: $\mathbf{Q}' = \mathbf{S} \mathbf{Q} \mathbf{S}$; $s_{ii} = \sigma_{ii} / \sigma_{ii,ref}$; $s_{ij} = 0$

- Normal matrix: $\mathbf{F}^{\mathsf{T}} \mathbf{N} \mathbf{F} = (\mathbf{S} \mathbf{Q} \mathbf{S})^{-1}$
- Cholesky decomposition: $\mathbf{N} = \mathbf{G} \mathbf{G}^{\mathsf{T}}$

 $(\mathbf{S} \mathbf{Q} \mathbf{S})^{-1} = \mathbf{H} \mathbf{H}^{\mathsf{T}}$

 $\mathbf{F}^{\mathsf{T}} \mathbf{G} \mathbf{G}^{\mathsf{T}} \mathbf{F} = \mathbf{H} \mathbf{H}^{\mathsf{T}} = \mathbf{F}^{\mathsf{T}} = \mathbf{H} \mathbf{G}^{-1}$

Resulting NEQ: N' dx' = b' with N' = $\mathbf{F}^T \mathbf{N} \mathbf{F}$, b' = $\mathbf{F}^T \mathbf{b}$, dx' = $\mathbf{F}^{-1} \mathbf{dx}$ and $\mathbf{x_0}' = \mathbf{F}^{-1} \mathbf{x_0}$

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly AIUB Bern, January 19 - 20, 2017 **** **** Horizon2020

EGSIEM General Assembly AIUB Bern, January 19 - 20, 2017

EGSIEM General Assembly

AIUB Bern, January 19 - 20, 2017

