

WP6: An automated approach to estimate flood volumes based on SAR satellite imagery and DEMs

Hendrik Zwenzner

DLR

EGSIEM General Assembly University of Bern January 19. – 20. 2017

Objectives

- Establish a method for flood volume estimation for large scale floods based on EO data and DEMs
 - Higher level product compared to 2-D flood masks
 - Can be compared to gravity measurements from space
- Implement gravity based flood indicators into the operational workflow of DLR's Center for Satellite-based Crisis Information
 - Early-warning component for potential large scale flood events
 - Reduce lead time in satellite tasking (e.g. TerraSAR-X)

Introduction

Flood depth & volume estimations are mostly done by hydraulic modelling (1-D, 2-D)

> BUT the more complex & precise they get :

- computational cost increases
- study areas get smaller
- more input parameters are needed sometimes complex hydraulic models are not suitable for real-world flood risk analysis (BATES 2012)

BATES (2012:2515) "... argued that the use of **remote sensing data had allowed a significant breakthrough** to be made in flood inundation modelling."

-> in terms of higher resolutions, shorter revisit times, better availability

-> improving terrain data resolution leads to better performances than improving the hydraulic model!

Flood volumes without hydraulic modelling

but with improved remote sensing data?

Few publications tried to estimate flood volumes only with remote sensing data or a combination of RS data and hydraulic modelling before:

- HORRIT 1999: Snake algorithm for delineation
- NÉELZ et al 2006: Airborne SAR data & LiDAR, inundation extent delineation
- MASON et al. 2007: Waterline delineation with ERS SAR & LiDAR, hydraulic model
- MATGEN et al. 2007: SAR water mask extent, hydraulic modelling for flood depths
- ZWENZNER & VOIGT 2009: heights from cross sections for each river bank
- SCHUMANN et al. 2009: Flood depths from airborne photography and LiDAR, SAR too coarse
- KAWAK et al. 2013 flood volume & depths modeled with 1-D hydraulic model, **optical data**, low resolution (500 m)
- HUANG et al. 2014: inundation extent & LiDAR => shift small tiles till they fit the DEM

=> So far no study for large scale flood volumes & depths derived from SAR derived flood masks & DEMs with world wide coverage

Study Area: Bangladesh

- Seasonal flooding due to monsoonal precipitation
- Regular Charter activations
- Huge affected area

Selected Event:

Activation of the International Charter on 1st of August 2016

- 16 people killed
- 1.5 million people affected
- flooding of Ganges and Brahmaputra due to heavy rainfalls for several days

Method

Develop a method to get accurate flood volumes through a combination of a DEM and SAR imagery

Important criteria:

- low computational cost
- usage of up to date data

everything in-between the water surface and the DEM is flood volume

Input data

Flood Masks

- Sentinel-1 Scenes (SAR-Data) for Pre- & Post-Flooding, time-series
- ENVISAT ASAR

EGSIEM Meeting – 19-20 January 2017 – Bern

Input data

Digital Elevation Models (DEM)

- SRTM 30 m integer
- SRTM 30 m interpolated to 32-bit float (still height artefacts)
- TanDEM-X 30 m 32-bit float (Proposal submitted)

www.legos.obs-mip.fr

Gauge Validation Data

- Water level data for automatic in situ stations from the Bangladesh Water Development Board (BWDB)
- Altimeter data from Jason-2 for virtual gauges

Workflow

Raster approach

EGSIEM Meeting – 19-20 January 2017 – Bern

Threshold III advancement of THR 2

Difficulty to handle bi-modal distributions

 \Rightarrow Actually two thr's needed Compromise for lower level

Results

Calculated volumes compared to the mean of water level gauge measurements

=> Impact of choosen threshold and grid causes higher differences in Volume than the impact of the DEM

Discussion

Normalized volumes & mean water levels

For comparison, the mean value of seven water level gauges in Bangladesh is displayed.

Uncertainties

- Inaccurately orthorectified imagery
- Errors in the DEM (*absolute* vertical accuracy is better than 9 m)
- Errors in the gauge measurements
- Inaccuracy of the altimeter measurements (especially over rivers)
- Comparison from point to area values
- Wrong threshold/ grid size
- Inaccuracy in the correction for the same geoid/ellipsoid, ground lowering/deformation(STECKER et al. 2010)
- Zero of mean sea level of the gauge in Calcutta
- Inaccuracy of in situ water level measurements (but rather cm than meters)
- Time shift in gauge measurement and aquisiton of SAR scene
- Change in elevation of river bed -> braided river!

.

Reference Study

Mask used for volume estimations with GRACE

Relative change in water thickness

Comparing results :

STECKER et al. (2010:10):

"Both sets of data indicate that in an average year just over **100 GT** of water is stored within Bangladesh. The Storage can reach **150 GT** during exeptional floods..."

- \Rightarrow Up to 50 Gt are stored due to flooding
- \Rightarrow Results show 45 to 55 Gt of flood volumes depending on DEM and THR
- \Rightarrow still accuracy in range of Gt is not accurate enough!

Conclusions

- So far, it is possible to calculate inundation depth to an **accuracy of ≈2 m** compared to water level measurements
- The volume estimations fit to the results of other values in literature in a range of Gt
 - the kind and size of a grid has highly influences the results => a dynamic fishnet grid derived best results
 - THR 3 delivered best results as it can handle bi-modal distributions
 - Different DEMs deliver different results, full magnitude will be defined by TanDEM-X data
- The volume estimation is automated, as the script is fully automatic

