Estimation of white noise in a mass anomaly time-series and modelling the geocenter motion

P. Ditmar, Y. Sun, and R. Riva

Delft University of Technology, The Netherlands

Estimation of white noise

Tikhonov regularization of GRACEbased mass anomaly time-series

Penalty functional:

Regularization functional

Let
$$H(t) = \begin{pmatrix} h_1(t) \\ h_2(t) \\ \dots \\ h_K(t) \end{pmatrix}$$
 Mass anomalies in year 2
Mass anomalies in year K

$$\Omega[H] = \sum_{k=1}^{K-1} \int_{0}^{1} \left(\dot{h}_{k+1}(t) - \dot{h}_{k}(t) \right)^{2} dt$$

(t - time in years)

Example: Regularization in the absence of noise and penalized signals

 $H(t) = \sin 2\pi t + 0.5 \cdot t$

t - time in yearsH(t) - Equivalent water heights (EWH) in cm

Regularization parameter

Variance Component Estimation (see, e.g., Koch & Kusche, JoG, 2002)

Estimation of geocenter motion

Basic idea

 Goal: estimate temporal variations of degree-1 and C₂₀ coefficients, as well as the stochastic description of their errors (full covariance matrices)

• Data:

- GRACE SH coefficients (except for degree-1 and C_{20} coefficients), cleaned from GIA signal
- Residual OBP estimates (mean monthly values)
- Methodology: statistically-optimal data combination

Statistically-optimal data combination

General format of combining two data sets \mathbf{d}_1 and \mathbf{d}_2 : $\mathbf{x}_c = (\mathbf{A}_1^T \mathbf{C}_1^{-1} \mathbf{A}_1 + \mathbf{A}_2^T \mathbf{C}_2^{-1} \mathbf{A}_2)(\mathbf{A}_1^T \mathbf{C}_1^{-1} \mathbf{d}_1 + \mathbf{A}_2^T \mathbf{C}_2^{-1} \mathbf{d}_2),$

 \mathbf{x}_c is the re-estimated data set; $\mathbf{A}_{1,2}$ are design matrices; $\mathbf{C}_{1,2}$ are error covariance matrices. In case of combining GRACE data (spectral domain) and OBP data (spatial domain):

$$\mathbf{x}_c = (\mathbf{T}^T \mathbf{C}^{-1} \mathbf{T} + \mathbf{S} \mathbf{Y}^T \mathbf{P} \mathbf{Y} \mathbf{S})^{-1} (\mathbf{T}^T \mathbf{C}^{-1} \mathbf{x}_g + \mathbf{S} \mathbf{Y}^T \mathbf{P} \mathbf{h}).$$

Note that all the other coefficients are re-estimated.

- \checkmark \mathbf{x}_g : Vector containing GRACE coefficients.
- $\checkmark~$ C: Full error covariance matrix of GRACE data.
- \checkmark T: Truncated unit matrix.
- \checkmark Y: Transformation from spatial to spectral domain.
- \checkmark h: Vector containing OBP data.
- \checkmark S: Matrix transforming dimensionless coefficients into mass coefficients.
- \checkmark O: Ocean function, equals 1 over ocean and 0 over land.
- **x** C_o : Error covariance matrix of OBP data (diagonal). ($C_o = P^{-1}$)

Input data

- GRACE CSR RL05 solutions (including error covariance matrices)
- GIA model of A et al. (2012)
- Noise in AOD1B product (Dobslaw et al, 2015)

Estimation of C_o (noise is assumed to be stationary)

SD of noise in AOD1B product

SD of noise in fingerprint estimates (based on GRACE error covariance matrices)

Total noise SD

Final product

Validation: East Antarctica

Validation: Sahara

The produced time-series of degree-1 and C_{20} coefficients will be available from:

http://www.citg.tudelft.nl/deg1&c20

