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Relative explained variance 

Explained variance – variance of in situ measurements 
explained by the model 
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OBP fields from GRACE 
GFZ RL05a 

 

 

• improve leakage correction 

• remove Sumatra-Andaman  
earthquake signature 

• reconsider GIA model 

• residual tidal signal assessment: Gulf of Carpentaria 

• reconsider level of smoothing (DDK2, DDK3) 

Work in progress 
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