

Oceanographic validation of time variable gravity solutions from GRACE

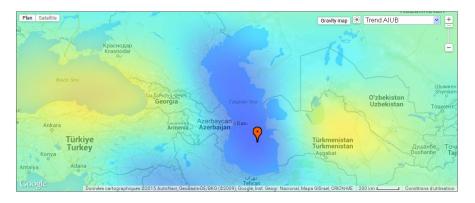
J.M. Lemoine ⁽¹⁾, S. Bourgogne ⁽²⁾, S. Bruinsma ⁽¹⁾, P. Gégout ⁽³⁾, R. Biancale ⁽¹⁾

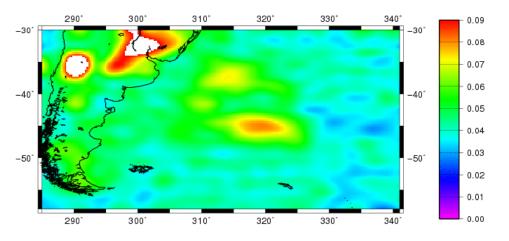
- (1) CNES/GRGS, Toulouse, France
- (2) Géode & Cie, Toulouse, France
- (3) GET/UMR5563/OMP/GRGS, Toulouse, France

- Interest of using some oceanic areas as a validation tool for GRACE products:
 - Availability of precise and densely sampled time series from altimetry
 - ➤ The oceanic structures are usually larger than the continental ones → more compatible with GRACE resolution

Conditions:

- The presence of noticeable mass signal in the GRACE solutions
- Altimeter heights have to be corrected for the steric component and for the loading effect




Summary

Test zones:

Inland sea: the Caspian sea

> Open ocean: the Zapiola gyre

* All available from

unfiltered and DDK-

1/2/3/4/5 versions

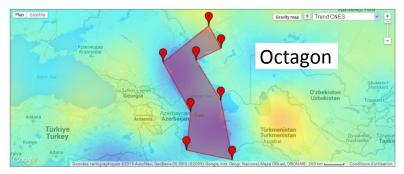
the ICGEM web site in

Data used:

Summary

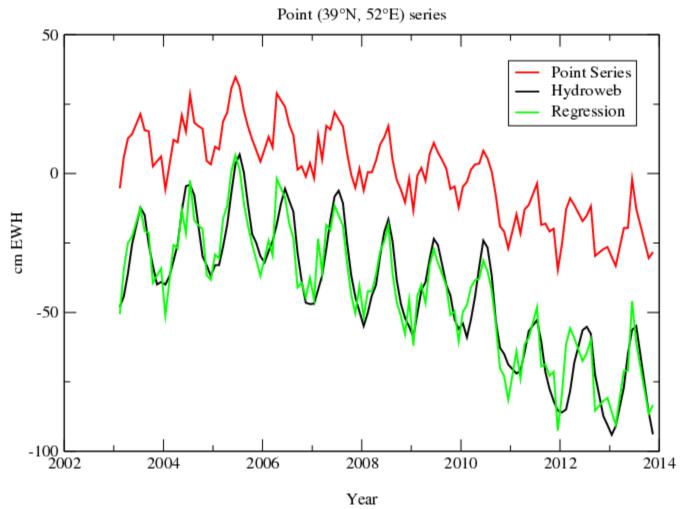
> Altimetry:

- open ocean: AVISO+ (Multi-satellite Gridded Sea Level Anomalies SSALTO/Duacs) daily
- o inland seas: **HYDROWEB** (Cretaux et al. 2011) 10-day
- GRACE time series (monthly solutions)*:
 - AIUB RL02 (DDK-5 filtered)
 - **CNES/GRGS RL03-v1** (unfiltered)
 - CSR RL05 (DDK-5 filtered)
 - **GFZ RL05a** (DDK-5 filtered)
 - JPL RL05 (DDK-5 filtered)
 - **TUGRAZ ITSG14** (DDK-5 filtered)



1- Caspian sea

- The largest enclosed inland body of water on Earth: 370,000 km² (400 x 900 km)
- Accurate altimeter time series
- Can test the ability of the GRACE solutions to provide spatially pertinent information
- GRACE point-wise and basin-wise time series are tested:


Test mostly valid in a relative sense; an absolute calibration would require more sophisticated methods (averaging kernel, land hydrology and steric effect removal, cf. Swenson & Wahr 2007)

TUGRAZ ITSG14 (DDK-5 filtered)

	Correlation		Scale Factor	
	Point	Basin	Point	Basin
AIUB RL02	0.91	0.94	1.32	1.67
CNES/GRGS RL03-v1	0.96	0.98	1.27	1.75
CSR RL05	0.91	0.93	1.37	1.68
GFZ RL05a	0.86	0.80	1.28	1.39
JPL RL05	0.89	0.89	1.28	1.53
TUGRAZ ITSG14	0.95	0.96	1.43	1.69

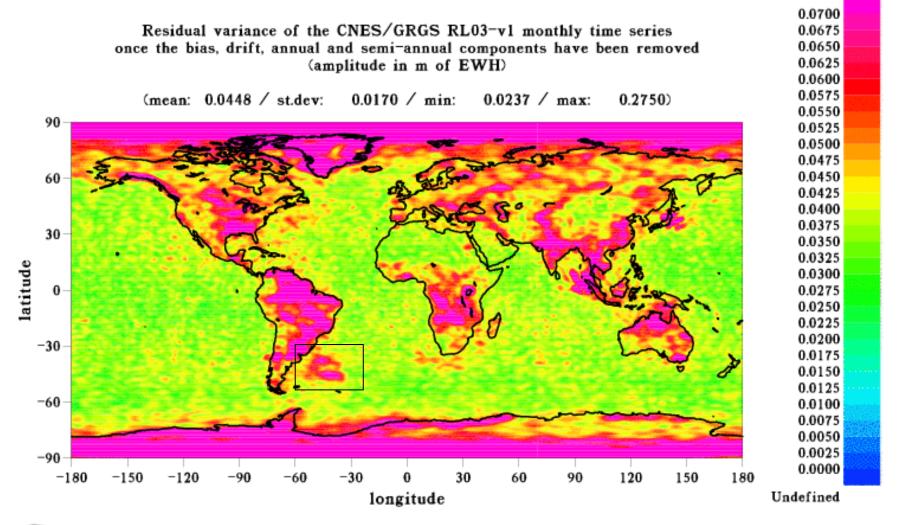
> Correlation is slightly better for basin-average than for point

ightarrow Less noise in the basin-average than in the point time series

> BUT scale factor is much higher for basin-average than for point

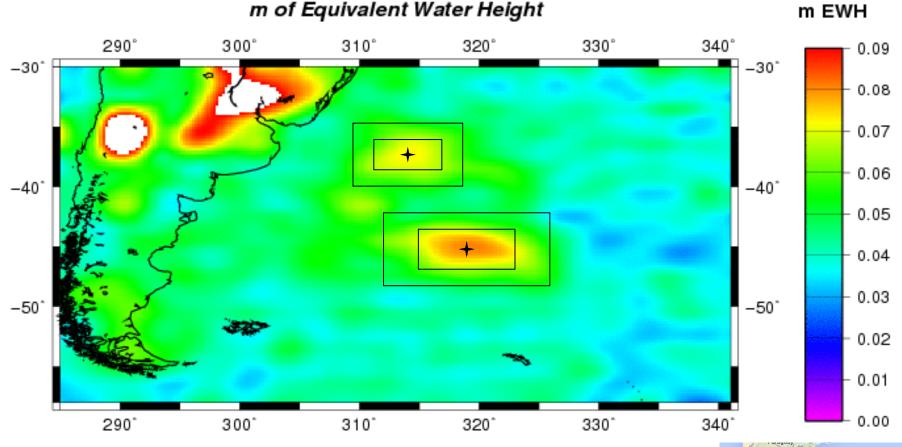
 \rightarrow The point time series is closer to the actual sea level

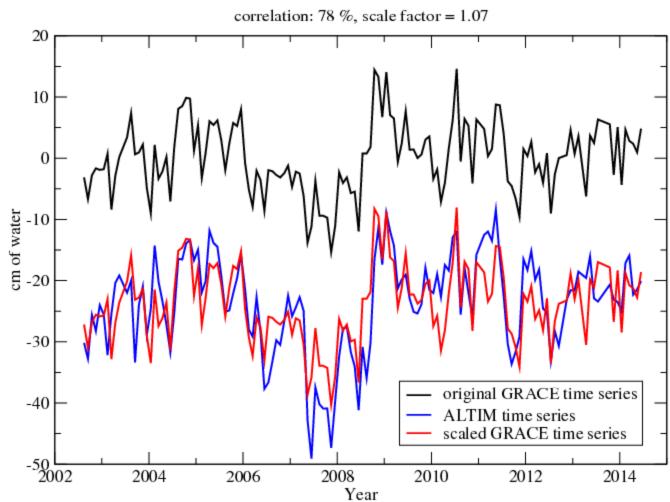
Best correlation is 98 %, best scale factor is 1.27



2- Zapiola gyre

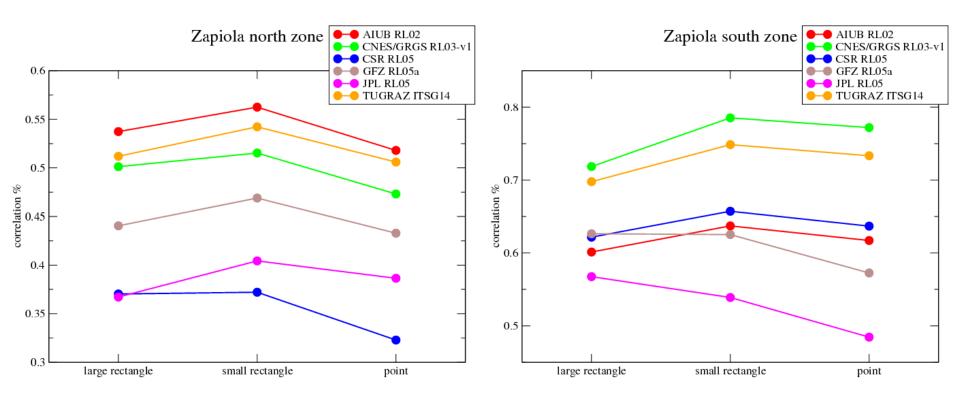
Large non-periodic mass signal in the GRACE series




Atla

Non periodic variability from CNES/GRGS RL03-v1 series

- Point coordinates: (37° S, 46° W) and (45° S, 41° W)
- Small rectangle area: north ~ 316,000 km², south ~ 280,000 km²
- Large rectangle area: north ~ 592,000 km², south ~ 1,120,000 km²


Best correlation : Zapiola south zone, small rectangle

2- Zapiola gyre

- The best coherence between altimetry and GRACE is achieved for areas ~ 300,000 km²
- > Agreement is much better for the south zone than for the north zone
- Best coherence in the south zone = 79 % with a scale factor of 1.07
- Worst coherence in the north zone = 37 % with a scale factor of 0.66

Conclusion

- Altimetry can be a precious tool for GRACE solutions validation
- > The selected oceanic areas must present a large mass signal
- They can be far off-coast and therefore escape contamination from continental hydrology
- In the Caspian sea we can reach a very high level of coherence between altimetry and GRACE (98 %) although it is an enclosed sea
- For some time series, the low correlations do not come from the smoothing by DDK-5, but from the intrinsic noise of the time series
- In the Zapiola gyre the variability of the ocean is higher than in the Caspian – spatially and temporally - and is more difficult to capture it with monthly time series from GRACE (max. correlation 79 %)
- The example of the Zapiola gyre shows that in some cases (Zapiola north) the monthly time sampling is not sufficient We must go to a shorter time sampling...

Thank you for your attention

