

EGSIEM - WP2 CNES/GRGS GRACE processing

J.M. Lemoine ⁽¹⁾, S. Bourgogne ⁽³⁾, R. Biancale ⁽¹⁾, S. Bruinsma ⁽¹⁾, P. Gégout ⁽²⁾

- (1) CNES/GRGS, Toulouse, France
- (2) GET/UMR5563/OMP/GRGS, Toulouse, France
- (3) Géode & Cie, Toulouse, France

Summary

- 1. Report on 2006-2007 NEQs processing
- 2. Problems at the poles in our RL03-v1: solved in RL03-v2

- The years 2006-2007 have been processed and the NEQs computed.
- They will be uploaded on the ftp server at Bern very soon
- The unconstrained solutions will be provided at the same time as the NEQs
- We have also computed a 4-SLR-sat monthly time series of NEQs over 2002-2016 (Lageos-1, Lageos-2, Starlette and Stella). It is available to EGSIEM members

- Processing standards:
 - > A priori sigma for KBRR: 1.e-7 m/s
 - A priori sigma for GPS phase: 2.e-2 m
 - A priori sigma for GPS code: 1. m
 - GPS measurements density: 1 epoch every 30"
 - The GPS partial derivatives are computed only up to degree 40

- Effects of relative weighting
 - GPS weight too high: too much striping in the solution (resonances)
 - GPS weight too low: orbit errors, and low sectorial coefficients badly determined

***** A priori sigma GPS : 8 mm (high weight)

Typical monthly solution

* A priori sigma GPS : 20 mm (low weight)

Typical monthly solution

Best solution:

high density, low weight, and cut GPS equation to degree 40

Truncation of GPS partials

Equivalent Water Heights comparison 501PN.decade.20462.kbr_gps80.0.G_ONLY.VI_RL03EQV_dg80.VI_k18_chol.svd_2500. :: EGS01PN.decade.20462.kbr_gps40.0.G_ONLY.VI_RL03EQV_dg80.VI_k18_chol.svd_

Degree 2 to 80

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

0 10 20 30 40 50 60 70 80

min -10.83 cm / max 9.77 cm / weighted rms 2.57 cm / oceans 2.69 cm

EGSIEM Progress Meeting, GFZ, June 2-3, 2016

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

CALCULATION OF

Model uncertainty (qsum = 4.60 cm)

Truncation of GPS partials

2011 2012 2013 2014 2015 2016 2017 2018

Up to 40 improves low degrees 2004 2005 2006

Gravity field solution: High vs. Low GPS weight

2007

Spectrum and uncertainties by degree (cm)

Equivalent Water Heights (cm)

Spectrum and uncertainties by order (cm)

Truncation of GPS partials

2017 2018

2013 2014 2015 2016

From 40 to 80 adds noise and striping 2008 2009 2010 2011 2012

Gravity field solution: High vs. Low GPS weight

Problems at the poles

- They are not immediately related to GPS
- Appear when low sectorial coefficients are wrong (compensation on higher orders). This can be the case when those are fixed, or with SVD

Example

Choleski inversion (no constraint), with degree 1 fixed or solved

Degree 1 fixed

Model uncertainty (qsum = 749.20 cm)

Equivalent Water Heights (cm)

-35

-30

EGSIEM Progress Meeting, GFZ, June 2-3, 2016

Reference uncertainty (qsum = 16.42 cm)

Degree 1 solved

EGSIEM Progress Meeting, GFZ, June 2-3, 2016

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Impact of wrong low-degree sectorials

Observatoire 3 GRGS O_{M} cnes

2002 2004 2006 2008 2010 2012 2014 2016 2018

JPL solution

JPL RL05 DDK5 - 200506 - Equivalent Water Heights Comparison to time series mean (degree 2 to 90)

EGSIEM Progress Meeting, GFZ, June 2-3, 2016

0.25

90

RL03-v1

RL03-v2

EGSIEM Progress Meeting, GFZ, June 2-3, 2016

17

GRACE satellite gravity data

Replot Back to form 🗮 Options

CNES2, RL03-v3-unconstrained, DDK2 -- Trend -1.79 cm/year

www.thegraceplotter.com, by CNES/GRGS

GRACE satellite gravity data

Equivalent Water Heights Islande (64.27°N, 17.24°W)

www.thegraceplotter.com, by CNES/GRGS

GRACE satellite gravity data

Equivalent Water Heights Islande (64.27°N, 17.24°W)

www.thegraceplotter.com, by CNES/GRGS

CONCLUSION

The choice of the inversion method for producing the combined solution is <u>VERY VERY</u> important

