# Implementation of the rigorous acceleration approach 

## Ulux progress on WP2



## The acceleration approach-an alternative way of processing GRACE data

- Concept: link kinematic observations to forces based on Newton's equation of motion

$\nabla V_{A B} \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}}=\ddot{\rho}-\frac{1}{\rho}\left(\dot{\mathrm{x}}_{\mathrm{AB}} \cdot \dot{\mathbf{x}}_{\mathrm{AB}}-\dot{\rho}^{2}\right)$


## The acceleration approach-an alternative way of processing GRACE data

## - Advantage

- No accumulation of numerical integration errors or model errors
- Allows for a point-wise application (especially suitable for regional and local applications)


## - Downside

- requires range acceleration and centrifugal component (GPS observations)


## Approximate solution

- Reducing the observations to residual quantities

- Neglecting the residual terms

$$
\ddot{\rho}-\ddot{\rho}^{0} \approx\left(\nabla V_{B}-\nabla V_{A}\right) \cdot \mathbf{e}_{A B}^{\mathrm{a}}-\left(\nabla V_{B}^{0}-\nabla V_{A}^{0}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}, 0}
$$

## Approximate solution



## Rigorous solution

- Assumption degrades the solution
- Error at degree 2 and around degree 16 (number of revolutions per day for GRACE)
- Improvement: Rigorous approach

$$
\begin{array}{rlll}
\ddot{\rho} & =\quad \ddot{\mathbf{x}}_{\mathrm{AB}} \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}} & +\frac{1}{\rho} \dot{\mathbf{x}}_{\mathrm{AB}} \cdot \dot{\mathbf{x}}_{\mathrm{AB}} & -\frac{\dot{\rho}^{2}}{\rho} \\
& =\left(\nabla V_{B}-\nabla V_{A}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}} & +\frac{1}{\rho} \dot{\mathbf{x}}_{\mathrm{AB}} \cdot \dot{\mathbf{x}}_{\mathrm{AB}} & -\frac{\dot{\rho}^{2}}{\rho} \\
& =\quad f & +g_{1} & +g_{2}
\end{array}
$$

## Rigorous solution

- Introduce a priori observation and reduce the equation system to residual quantities ( fit an "Observed" orbit and approximate a dynamic orbit)

$$
\begin{aligned}
\ddot{\rho}-\ddot{\rho}^{0} & =\left(\nabla V_{B}-\nabla V_{A}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}}+\frac{1}{\rho}\left(\dot{\mathbf{x}}_{\mathrm{AB}} \cdot \dot{\mathbf{x}}_{\mathrm{AB}}-\dot{\rho}^{2}\right) \\
& -\left(\nabla V_{B}^{0}-\nabla V_{A}^{0}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}, 0}-\frac{1}{\rho^{0}}\left(\dot{\mathbf{x}}_{\mathrm{AB}}^{0} \cdot \dot{\mathbf{x}}_{\mathrm{AB}}^{0}-\left(\dot{\rho}^{0}\right)^{2}\right)
\end{aligned}
$$

- Linearize the right-hand side of the above equation

$$
\begin{array}{r}
\ddot{\rho}-\ddot{\rho}^{0} \approx \sum_{i} \frac{\partial f}{\partial p_{i}} \Delta p_{i}+\sum_{i} \frac{\partial g_{1}}{\partial p_{i}} \Delta p_{i}+\sum_{i} \frac{\partial g_{2}}{\partial p_{i}} \Delta p_{i} \\
\left(\nabla V_{B}-\nabla V_{A}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}}-\left(\nabla V_{B}^{0}-\nabla V_{A}^{0}\right) \cdot \mathbf{e}_{\mathrm{AB}}^{\mathrm{a}, 0}=\sum_{i} \frac{\partial f}{\partial p_{i}} \Delta p_{i}+\hbar^{2} \\
\frac{1}{\rho} \dot{\mathbf{x}}_{\mathrm{AB}} \cdot \dot{\mathbf{x}}_{\mathrm{AB}}-\frac{1}{\rho^{0}} \dot{\mathbf{x}}_{\mathrm{AB}}^{0} \cdot \dot{\mathbf{x}}_{\mathrm{AB}}^{0}=\sum_{i} \frac{\partial g_{1}}{\partial p_{i}} \Delta p_{i}+\hbar^{2} \\
-\frac{\dot{\rho}^{2}}{\rho}+\frac{\left(\dot{\rho}^{0}\right)^{2}}{\rho^{0}}=\sum_{i} \frac{\partial g_{2}}{\partial p_{i}} \Delta p_{i}+\hbar^{2}
\end{array}
$$

## Rigorous solution

- Solve the variational equations using the variation of constant approach (Jäggi, 2007 )
- Variational equation for the initial conditions (homogeneous solution)

$$
\frac{d}{d t}\binom{\Phi}{\dot{\Phi}}=\binom{\dot{\Phi}}{F(\mathbf{x}, \dot{\mathbf{x}}) \cdot \Phi}
$$

- Variation of constants (inhomogeous solution)

$$
\begin{aligned}
\boldsymbol{\alpha}_{p_{i}}(t) & =\int_{t_{0}}^{t} \Phi^{-1}(\tau) \cdot \frac{\partial \mathbf{h}(\tau)}{\partial p_{i}} d \tau \\
\boldsymbol{\phi}_{p_{i}}(t) & =\Phi(t) \cdot \boldsymbol{\alpha}_{p_{i}}(t) .
\end{aligned}
$$

- Connect the above derivatives to the linearized mathematical model by applying the chain rule


## Rigorous solution

- Belongs to another implimentation of the variational equations
- Theoretically give identical results as the other approaches implemented within the EGSIEM project
- Practically different processing schemes come with their particular advantages and disadvantages. By combining the different solutions would be able to benefit from the advantages and to mitigate the disadvantages.


## Current implementation status at UL

- Already finished:
- Data screening for Grace A and B using GNV1B data
- Testing the covariance information of Grace A and B for positive definiteness
- Correcting the non-linear behavior in the accelerometer data
- synchronization of the GRACE A and B
- Orbit adjustment for Grace A and B (done, but may have problems...)
- Under going:
- Combined adjustment of Grace A, B and K-Band data (Stucked)


## Problems to be solved

- Orbit adjustment:
- Different iterations on different computers (result in different input orbit for later combined adjustment):
- Desktop (matlab R2015b), stopped at the $3^{\text {rd }}$ iteration
- Mac (matlab R2014b), stopped at the $5^{\text {th }}$ iteration
- Different initial conditions reaching 1 cm
- Combined adjustment:
- Different $N$ matrix for range bias (3), acc scale (3) and bias (3), I think both are wrong, since there are negative diagal values
- Desktop, acc scale negative
- Mac, acc bias negative
- Different b (observed range-xAB)


## Problems to be solved

| 13.7910 | -13.8353 | 0.1207 | 1.7464 | $1.3008 \mathrm{e} \ldots$ | -0.0036 | $2.5945 \mathrm{e} \ldots$ | 0.0332 | $-1.3877 \mathrm{e} \ldots$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -13.8368 | 31.0844 | -17.2634 | 0.1868 | $-1.2647 \mathrm{e} \ldots$ | $5.1209 \mathrm{e}-\ldots$ | $7.2726 \mathrm{e} \ldots$ | -0.0125 | $1.7153 \mathrm{e} \ldots$ |
| 0.1535 | -17.2606 | 17.0356 | -0.0962 | $-1.9881 \mathrm{e} \ldots$ | 0.0042 | $8.1848 \mathrm{e} \ldots$ | $6.2128 \mathrm{e}-\ldots$ | $7.7294 \mathrm{e} \ldots$ |
| 1.5583 | 0.1901 | -0.0559 | 9.8670 | $2.9159 \mathrm{e} \ldots$ | -0.0885 | $-1.2257 \mathrm{e} \ldots$ | 0.1573 | $-1.4768 \mathrm{e} \ldots$ |
| $7.7435 \mathrm{e} \ldots$ | $-1.2291 \mathrm{e} \ldots$ | $-3.3769 \mathrm{e} \ldots$ | $2.9861 \mathrm{e} \ldots$ | $-1.0137 \mathrm{e} .$. | $2.0991 \mathrm{e} \ldots$ | $9.5364 \mathrm{e} \ldots$ | $2.6439 \mathrm{e} \ldots$ | $5.2431 \mathrm{e} \ldots$ |
| -0.0016 | $3.7908 \mathrm{e}-\ldots$ | 0.0069 | -0.0811 | $2.0238 \mathrm{e} \ldots$ | $3.0603 \mathrm{e} \ldots$ | $-2.0963 \mathrm{e} \ldots$ | $-7.0171 \mathrm{e} \ldots$ | $-9.1545 \mathrm{e} \ldots$ |
| $-7.0405 \mathrm{e} \ldots$ | $-1.5969 \mathrm{e} \ldots$ | $-5.7634 \mathrm{e} \ldots$ | $2.0623 \mathrm{e} \ldots$ | $-3.4731 \mathrm{e} \ldots$ | $8.0361 \mathrm{e} \ldots$ | $3.0603 \mathrm{e} \ldots$ | $2.1586 \mathrm{e} \ldots$ | $1.6700 \mathrm{e} \ldots$ |
| 0.0483 | -0.0117 | 0.0066 | 0.2000 | $7.9280 \mathrm{e} \ldots$ | -0.0023 | $-9.2404 \mathrm{e} \ldots$ | $3.0603 \mathrm{e} \ldots$ | $-3.9403 \mathrm{e} \ldots$ |
| $2.3891 \mathrm{e} \ldots$ | $2.9537 \mathrm{e} \ldots$ | $2.4107 \mathrm{e} \ldots$ | $1.0134 \mathrm{e} \ldots$ | $4.7995 \mathrm{e} \ldots$ | $-1.2651 \mathrm{e} \ldots$ | $-6.7151 \mathrm{e} \ldots$ | $1.4826 \mathrm{e} \ldots$ | $3.0603 \mathrm{e} \ldots$ |
| 1 |  |  |  | $\ldots$ | 6 | 7 | 8 | 9 |
| 14.2034 | -13.8100 | 0.3611 | 1.6289 | $1.6609 \mathrm{e}+05$ | -0.0398 | $-4.7538 \mathrm{e}+05$ | 0.0441 | $-7.5025 \mathrm{e}+07$ |
| -13.8004 | 31.0866 | -17.2423 | 0.1813 | 795.2148 | -0.0027 | $-5.7141 \mathrm{e}+04$ | -0.0114 | $-4.7882 \mathrm{e}+06$ |
| 0.4269 | -17.2438 | 17.1961 | -0.1428 | $8.1739 \mathrm{e}+04$ | -0.0201 | $-4.0645 \mathrm{e}+05$ | 0.0082 | $-4.1503 \mathrm{e}+07$ |
| -0.7945 | 0.1786 | -0.1666 | -3.4022 | $-1.4276 \mathrm{e}+05$ | 0.0398 | $1.6883 \mathrm{e}+05$ | -0.0521 | $7.0000 \mathrm{e}+07$ |
| $1.3187 \mathrm{e}+05$ | -933.4834 | $7.4365 \mathrm{e}+04$ | $-1.2214 \mathrm{e}+05$ | $4.8220 \mathrm{e}+10$ | $-1.1095 \mathrm{e}+04$ | $-2.4011 \mathrm{e}+11$ | $2.1811 \mathrm{e}+03$ | $-2.2768 \mathrm{e}+13$ |
| -0.0301 | -0.0020 | -0.0160 | -0.0059 | $-1.0726 \mathrm{e}+04$ | $3.0603 \mathrm{e}+14$ | $4.9976 \mathrm{e}+04$ | $-8.8021 \mathrm{e}-04$ | $5.2093 \mathrm{e}+06$ |
| $-3.1423 \mathrm{e}+05$ | $-2.8476 \mathrm{e}+04$ | $-1.7537 \mathrm{e}+05$ | $2.3113 \mathrm{e}+04$ | $-1.1596 \mathrm{e}+11$ | $2.7780 \mathrm{e}+04$ | $3.0603 \mathrm{e}+22$ | $-8.6715 \mathrm{e}+03$ | $5.6223 \mathrm{e}+13$ |
| 0.0076 | -0.0124 | $-1.3789 \mathrm{e}-04$ | 0.0207 | $-1.2281 \mathrm{e}+03$ | $2.6636 \mathrm{e}-04$ | $9.0431 \mathrm{e}+03$ | $3.0603 \mathrm{e}+14$ | $6.1184 \mathrm{e}+05$ |
| $-7.4817 \mathrm{e}+07$ | $-3.8779 \mathrm{e}+06$ | $-3.6945 \mathrm{e}+07$ | $-5.9276 \mathrm{e}+07$ | $-2.5416 \mathrm{e}+13$ | $6.1884 \mathrm{e}+06$ | $1.1191 \mathrm{e}+14$ | $-3.0806 \mathrm{e}+06$ | $3.0603 \mathrm{e}+22$ |
|  |  |  |  |  |  |  |  |  |

EOSIEM

## Comparison



## Comparison



## Comparison



## Our strategies

- Orbit adjustment:
- Common parameter
- Acc scale + bias
- Arc specific parameter
- Empirical linear acc ( 15 min ), initial conditions (no constrains)
- Combined adjustment:
- Common parameter
- Range bias + Acc scale + bias (9)
- Arc specific parameter
- Empirical linear acc ( 15 min ), initial conditions
- Constraining values:
- Empirical linear acc: 5e-9
- Acc scale: 1e-4
- Acc bias: 1e-8
- Pos: 1e-1
- Vel: 1e-2
- Scaling factor for $y$ and $z$ components (emp acc,, acc scale and bias) : 1e-16

