

WP 2: K-Band data screening and noise study

Presenter: Uli

Affiliation: AIUB

Impact of screening strategy on monthly gravity solutions

Whole mission noise study for
GPS phase observations / kinematic orbits

- > KRR-observations
- > monthly gravity fields

Screening strategy test month: December 2012

KRR O – C: data screened out by CSR in red

KRR O – C: data screened out by CSR in red

AIUB-solutions with CSR-screening

Differences in equivalent water heights reach 20 cm but are very localized. Differences in degree variances (with respect to ITG-GRACE2010) are small and limited to high orders (> 60).

AIUB: monthly solution 12/2012

Equivalent water heights (± 20 cm) with respect to ITG_GRACE2010.

Coefficients (S / C dimensionless) with respect to ITG_GRACE2010.

E

AIUB-Screening: 12/2012

AIUB (CSR screening): monthly solution 12/2012

Equivalent water heights (± 20 cm) with respect to ITG_GRACE2010.

Coefficients (S / C dimensionless) with respect to ITG_GRACE2010.

SIEN

CSR-Screening: 12/2012

KRR-residuals, not screened

E

KRR-residuals, AIUB-screened

doy 352 - 366

KRR-residuals, **CSR-screened**

EGSIEM General Assembly, University of Bern, June 11.-12. 2015

x 10⁻⁶

0.5

0

-0.5

Conclusions: screening strategy

• quite massive (6120 obs / 975810 obs = 0.6%) screening of KRR observations does not hurt the solution ...

... neither does it help a lot.

> good CSR-performance probably not due to "magic screening"

Impact on gravity field solution not directly related to location of "bad" observations

- big KRR-residuals at
 - illuminated magnetic pole
 - Micronesia (problem area of ocean tide models)

Noise study: daily RMS of kin. orbits (geometry)

Phase residuals mapped to antenna fixed system

2004, doy 1-59, 160-366

Phase residuals mapped to antenna fixed system

Phase residuals mapped to antenna fixed system

K-Band validation of kin. orbits (geometry)

Pre-elimination of orbit parameters from GPS-Neqs. (geometry + background model)

Daily RMS of KRR-residuals (geometry + background model)

Variability of monthly gravity field solutions

Daily relative weights Kin. Orbits / KRR

Horizon2020

Conclusions (noise study)

- RMS kin. orbit GRACE A: 1.5 1.2 mm, GRACE B: 1.3 – 1.0 mm
 - correlation with beta-angle (Sun)
- RMS of KRR residuals: 2e-7 3e-7 µm/s
 - correlation with inter-satellite distance
 - satellite elevation
 - solar / ionosphere activity???
- variability of monthly solutions (wSTD over oceans) correlated with solar / ionosphere activity
- > constant relative weight not appropriate

